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Abstract

Pulseless electrical activity (PEA) is one of the most
common rhythms during a cardiac arrest (CA), and it con-
sists in lack of palpable pulse in presence of electrical
activity in the heart. The main treatment for a CA is
the cardiopulmonary resuscitation (CPR), including chest
compressions and ventilations, together with defibrillation
shocks and drugs when necessary. The therapy of PEA
depends on its characteristics, mainly the morphology of
the QRS complex. Well known algorithms for QRS com-
plex detection and delineation were designed for hemo-
dynamically stable patients with pulsed rhythm (PR). The
aim of this study was to develop an automatic method for
QRS complex detection in patients with PEA during CA.
The database for this study consists of 5128 PEA segments
from 264 in-hospital CA patients. The ECG signal was de-
composed using the stationary wavelet transform, a peak
detector was applied on the third detail component and a
multicomponent verification was set to detect the peaks.
Finally, a time alignment of the detected QRS complexes
was performed using the original ECG signal. The pro-
posed method presents median (IQR) Se/PPV/F1 values of
92.4(15.2)/88.5(15.4)/88.8(15.6) for PEA segments.

1. Introduction

Cardiac arrest (CA) is a main cause of death in the in-
dustrialized world, with an average incidence of 55 per
100.000 persons-year and a survival rate below 8.4% [1,2].
An early recognition and a rapid treatment of the CA are
essential to enhance survival chance, and the treatment de-
pends on the heart rhythm of the patient [3]. The pulse-
less electrical activity (PEA) is one of the most frequent
rhythms by the time the emergency services arrive, with
an incidence between 20-30% and 40-60% in out- and in-
hospital CA, respectively [4–6].

PEA is a clinical condition with a electromechanical dis-
sociation, characterized by organized cardiac electrical ac-
tivity without palpable pulse [7]. The cardiopulmonary re-
suscitation (CPR) and pharmacological treatment of a PEA
during a CA depends on the characteristics of the PEA. Re-
cent studies have shown that PEAs with narrow QRS du-
ration and high slopes have better prognosis and deserve
different treatment in contrast to those with wider QRS
complex in which immediate pharmacological treatment
is advised [8–10].

ECG waves delineation is essential for rhythm charac-
terization. Once ECG is delineated information such as
hear rate, and wave segment duration and amplitude fea-
tures can be computed. The QRS complex is the most
characteristic waveform in the ECG and its detection is the
most critical step in ECG delineation [11, 12].

Several automatic methods have been proposed in the
literature for QRS detection and delineation in patients
with pulsed rhythm (PR) [11–15]. Wavelet transform is
considered a encouraging technique for QRS detection and
delineation. Decomposing ECG in different frequency
band details allows discriminating different waves in the
ECG avoiding the baseline and high frequency noise [11].
The QRS is usually identified detecting the maximum
slope point of the R wave, which is considered the refer-
ence point of the QRS complex and it has high amplitude
that makes easier to detect [11, 13].

Well known automated QRS detectors have not been
evaluated in patients during PEA. In this study an auto-
mated algorithm was designed for QRS complex detection
in PEA rhythms.

2. Materials

The database used in this study is a subset of a larger
in hospital CA episodes database. It consists of 264
episodes, recorded by emergency services and include
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ECG, transthoracic impedance (TI) and ventilations sig-
nals. 89 of those episodes were from St. Olav Univer-
sity Hospital (Norway), 136 from Hospital of the Uni-
versity of Pennsylvania (USA) and 39 from Penn Pres-
byterian Medical Center (USA). The 89 episodes from
Norway were recorded using LIFEPAK-20 (Stryker, Red-
mond, USA) defibrillators between 2018 and 2021, while
the 175 episodes form USA hospital were recorded using
HeartStart MRx-defibrillators (Philips Medical Systems,
Andover, Massachusetts, USA) between 2008 and 2010.

All episodes were manually assessed and annotated by
expert clinicians. Rhythm type and QRS complexes were
annotated in the ECG signal, and the intervals with chest
compressions identified in the TI signal. Intervals with du-
ration between 3-6 s were selected in chest compression
pauses, and separated in 3 s segments. A total of 5128
segments with a mean duration of 3.47 s per segment were
extracted. The total duration of the database was 335min,
with 19085 heart beats, 3.7 per segment.

3. Methods

Figure 1 shows the overall scheme of the proposed al-
gorithm. First, the ECG signal was decomposed using a
8-level stationary wavelet transform (SWT). Then, possi-
ble peaks were searched in the 3rd detail component and
a multicomponent evaluation was applied to validate those
peaks. Finally, the peak positions were searched in the
maximums of the ECG signal.

3.1. SWT decomposition

For the SWT decomposition Daubechies-3 mother
wavelet was applied and 8-level decomposition used, fol-
lowing procedures proposed in [2, 15].

3.2. QRS reference point detection

As the energy of the QRS complex is concentrated in
3-40 Hz frequency band [16, 17] the detailed components
d3-d5 were analysed to detect the QRS reference points.
An example of a PEA segment decomposition in d3, d4
and d5 details is shown in Figure 2.

The QRS reference points were computed in the d3 de-
tail component applying the amplitude threshold given in
1. A minimum peak to peak distance of 100ms was estab-
lished between consecutive peaks.

Th3 = 0.5 ∗ max(−d3) (1)

A multicomponent evaluation was applied in d4 and d5
detail components. Peaks predected in d3 were considered
as QRS reference points only if its value in d4 and d5 detail
coefficients were above th4 and th5 thresholds:

Th4 = 0.4 ∗ max(−d4) (2)

Th5 = 0.2 ∗ max(−d5) (3)

3.3. Align QRS reference points

Finally, the QRS reference points computed in the previ-
ous steps were time aligned with the maximum of the ECG
signal in a tolerance interval of 150ms before and after the
detected peak.

3.4. Statistical evaluation

QRS instants manually annotated by clinicians were
considered as ground truth for evaluation purposes. A QRS
was considered correct if detected in a range of 100ms
around the ground truth. Algorithms were evaluated in
terms of sensitivity (Se), percentage of correctly detected
QRS complexes; positive predictive value (PPV), percent-
age of detected QRS complexes that are actually QRS; and
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Figure 1. Overall scheme of the automatic algorithm to detect QRS complexes during PEA.
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Figure 2. Examples of the ECG signal and its detail com-
ponents d3, d4 and d5.

F-score (F1), the harmonic mean of Se and PPV. The per-
formance metrics were calculated per patient, and the final
results were presented as the median (interquartile range,
IQR) for all patients.

The QRS detector proposed in the study was compared
with two QRS detection/delineation algorithms proposed
in the literature: Martinez et al. [12] and Elola et al. [18].

4. Results

The performance metrics are shown in the Table 1 in
terms of Se, PPV and F1. It can be observed that the pro-
posed algorithm outperformed the best literature algorithm
in more than 6 points of F1. Its higher Se means that it cor-
rectly detects many QRS complexes missed by the other
algorithms.

Table 1. Performance metrics for the proposed algorithm
and two other methods. The table shows the median (IQR)
values for Se, PPV and F1.

Se (%) PPV (%) F1 (%)

This study 92.4 (15.2) 88.5 (15.4) 88.8 (15.6)
Martinez et al. [12] 75.6 (16.4) 89.1 (18.9) 80.0 (16.6)
Elola et al. [18] 82.7 (28.5) 84.5 (28.7) 82.7 (28.3)

5. Discussion and conclusions

The detection and delineation of QRS complexes is
widely used in rhythm characterization during CA. How-
ever, automated methods proposed in the literature have
not been tested with organized PEA rhythms. This study
is the fist proposing an automatic algorithm for QRS com-
plex detection in patients in CA presenting PEA.

Comparing to proposals by Martinez et al. [12] and
Elola et al. [18], our algorithm outperforms in 10 points of
Se with similar PPV values. Two are the main reasons for
this improvement. Firstly, the proposed technique is better
adapted to the chaotic and variable characteristics of QRS
complex during CA. Secondly, CPR therapy implies that
the ECG analysis intervals are limited to pauses between
compressions, with a duration of 3-10 s. Unlike other pub-
lished methods, the proposed algorithm was optimized for
short-duration segments.

This work is subject to a number of limitations. On the
one hand, the database has a limited number of patients,
and only in-hospital CA were included in this study. On
the other hand, the algorithm assumes that all segments
are organized rhythms with PEA, and it would required an
adaptation for other organized rhythms or non-organized
rhythms.

This study is the first step for the development of au-
tomatic algorithms that characterize the QRS complex of
PEA patients during a CA. This characterization could as-
sist and guide clinicians in determining the most appropri-
ate resuscitation treatment.
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